- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Li, Guanxun (3)
-
Zhang, Xianyang (2)
-
Chen, Jun (1)
-
Yang, Lu (1)
-
Zhou, Quan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Summary We discover a connection between the Benjamini–Hochberg procedure and the e-Benjamini–Hochberg procedure (Wang & Ramdas, 2022) with a suitably defined set of e-values. This insight extends to Storey’s procedure and generalized versions of the Benjamini–Hochberg procedure and the model-free multiple testing procedure of Barber & Candés (2015) with a general form of rejection rules. We further summarize these findings in a unified form. These connections open up new possibilities for designing multiple testing procedures in various contexts by aggregating e-values from different procedures or assembling e-values from different data subsets.more » « less
-
Li, Guanxun; Zhou, Quan (, Journal of Computational and Graphical Statistics)We study the Bayesian multi-task variable selection problem, where the goal is to select activated variables for multiple related data sets simultaneously. We propose a new variational Bayes algorithm which generalizes and improves the recently developed “sum of single effects” model of Wang et al. (2020a). Motivated by differential gene network analysis in biology, we further extend our method to joint structure learning of multiple directed acyclic graphical models, a problem known to be computationally highly challenging. We propose a novel order MCMC sampler where our multi-task variable selection algorithm is used to quickly evaluate the posterior probability of each ordering. Both simulation studies and real gene expression data analysis are conducted to show the efficiency of our method. Finally, we also prove a posterior consistency result for multi-task variable selection, which provides a theoretical guarantee for the proposed algorithms. Supplementary materials for this article are available online.more » « less
-
Li, Guanxun; Yang, Lu; Chen, Jun; Zhang, Xianyang (, Genes)It is well known that the microbiome data are ridden with outliers and have heavy distribution tails, but the impact of outliers and heavy-tailedness has yet to be examined systematically. This paper investigates the impact of outliers and heavy-tailedness on differential abundance analysis (DAA) using the linear models for the differential abundance analysis (LinDA) method and proposes effective strategies to mitigate their influence. The presence of outliers and heavy-tailedness can significantly decrease the power of LinDA. We investigate various techniques to address outliers and heavy-tailedness, including generalizing LinDA into a more flexible framework that allows for the use of robust regression and winsorizing the data before applying LinDA. Our extensive numerical experiments and real-data analyses demonstrate that robust Huber regression has overall the best performance in addressing outliers and heavy-tailedness.more » « less
An official website of the United States government
